849 research outputs found

    A fuzzy-based evaluation of financial risks in build-own-operate-transfer water supply projects

    Get PDF
    The build–own–operate–transfer (BOOT) scheme is widely used for the provision of new bulk water supply. However, this scheme is complex and carries significant financial risks because of the characteristics of the water sector and the involvement of public-private stakeholders with new and extended responsibilities, large private capital, and long contract duration. Drawing on the Nungua Seawater Desalination Plant (NSDP) in Ghana, this study seeks to identify and assess the critical financial risks associated with BOOT water supply projects and evaluate the financial risk level of the NSDP project. The risks and their relative criticality on the NSDP project are investigated by using a questionnaire survey method. The questionnaire was formulated with a set of 18 risks derived from extant literature and project documentation. Perceived critical financial risks affecting the NSDP project were assessed by a team of experts who had direct involvement in the project. A fuzzy synthetic evaluation suggests that the project is financially risky and that all the risks are critical to the project. Bankruptcy of consortium members, unfavorable economy of the host country, uncertainty in tariff adjustment of water products, rate of return restrictions, and availability problem of private capital are the five most highly-ranked risks. The fuzzy technique is used to represent and model experiential knowledge of the survey participants and to address the fuzziness of their expert judgments. The study’s results facilitate prioritization of risks and a comprehensive risk management program during the lifecycle of the case project and future projects. The fuzzy technique is suitable for early phases of BOOT projects to prioritize the risks that require a detailed analysis and to predict the risk level of a project

    Exploring the Strategic Motivation of Internationalisation: Indonesian Contractors’ Perspectives

    Get PDF
    Although extensive research has been carried out on international construction, scant study in this domain exists which has paid attention to developing economies. The present study empirically investigates the above context from the perspective of one of the largest developing nations, Indonesia. Focus of this study is Indonesian contractors’ motivations to enter foreign marketplaces. An empirical approach integrating quantitative and qualitative techniques was adopted to address the research question. The primary data were collected through questionnaires distributed to large Indonesian contractors. Descriptive statistical method and relative importance index (RII) were employed for data analysis. In the discussion the survey results were triangulated with the interview findings. The results clarify that the reason to pursue overseas projects was motivated by multiple-motivations rather than a single one. The major motivations were to increase profitability, to benefit competitive advantage, to expand business, to capitalize on globalization/free trade regions, to respond to project sponsor’s invitation and to gain international experience. An implication of these findings is that the existing condition of the companies should be taken into consideration when measuring companies’ motivation levels in pursuing overseas projects

    Internationalization of Construction Enterprises: An Overview of Motivation

    Get PDF
    Since the 1970s, researchers have investigated the international expansion of construction enterprises (IECE) from diverse dimensional issues, including the motivation. Different underlying reasons have been identified; however, attempts to reach a consensus of the motivation for IECE have been overlooked. This research solicits and overviews the motivation of construction enterprises with respect to overseas business expansion. It recommends a conceptual framework of the generic motivation for IECE. Nineteen motives are specified and described in a systematic review of the literature on international construction studies. They are then structured into four categories: the source of motivation (internal or external); the pattern (traditional or emerging); the response (proactive or reactive); and the objective (profit, market, resource or opportunity). Further study of this field is equally important by involving the deterrent factors of motivation. Therefore, this paper advocates an investigation of the factors impeding IECE in further related studies

    Cetuximab Augments Cytotoxicity with Poly (ADP-Ribose) Polymerase Inhibition in Head and Neck Cancer

    Get PDF
    Overexpression of the epidermal growth factor receptor (EGFR) is a hallmark of head and neck cancers and confers increased resistance and inferior survival rates. Despite targeted agents against EGFR, such as cetuximab (C225), almost half of treated patients fail this therapy, necessitating novel therapeutic strategies. Poly (ADP-Ribose) polymerase (PARP) inhibitors (PARPi) have gained recent attention due to their unique selectivity in killing tumors with defective DNA repair. In this study, we demonstrate that C225 enhances cytotoxicity with the PARPi ABT-888 in UM-SCC1, UM-SCC6, and FaDu head and neck cancer cells. The mechanism of increased susceptibility to C225 and PARPi involves C225-mediated reduction of non-homologous end-joining (NHEJ)- and homologous recombination (HR)-mediated DNA double strand break (DSB) repair, the subsequent persistence of DNA damage, and activation of the intrinsic apoptotic pathway. By generating a DSB repair deficiency, C225 can render head and neck tumor cells susceptible to PARP inhibition. The combination of C225 and the PARPi ABT-888 can thus be an innovative treatment strategy to potentially improve outcomes in head and neck cancer patients. Furthermore, this strategy may also be feasible for other EGFR overexpressing tumors, including lung and brain cancers

    Discovertebral (Andersson) lesions of the spine in ankylosing spondylitis revisited

    Get PDF
    A well-known complication in patients with ankylosing spondylitis (AS) is the development of localised vertebral or discovertebral lesions of the spine, which was first described by Andersson in 1937. Since then, many different terms are used in literature to refer to these localised lesions of the spine, including the eponym ‘Andersson lesion’ (AL). The use of different terms reflects an ongoing debate on the exact aetiology of the AL. In the current study, we performed an extensive review of the literature in order to align communication on aetiology, diagnosis and management between treating physicians. AL may result from inflammation or (stress-) fractures of the complete ankylosed spine. There is no evidence for an infectious origin. Regardless of the exact aetiology, a final common pathway exists, in which mechanical stresses prevent the lesion from fusion and provoke the development of pseudarthrosis. The diagnosis of AL is established on conventional radiography, but computed tomography and magnetic resonance imaging both provide additional information. There is no indication for a diagnostic biopsy. Surgical instrumentation and fusion is considered the principle management in symptomatic AL that fails to resolve from a conservative treatment. We advise to use the term Andersson lesion for these spinal lesions in patients with AS

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore